Importance of the N-Terminal Domain of the Qb-SNARE Vti1p for Different Membrane Transport Steps in the Yeast Endosomal System

نویسندگان

  • Michael Gossing
  • Subbulakshmi Chidambaram
  • Gabriele Fischer von Mollard
چکیده

SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) on transport vesicles and target membranes are crucial for vesicle targeting and fusion. They form SNARE complexes, which contain four α-helical SNARE motifs contributed by three or four different SNAREs. Most SNAREs function only in a single transport step. The yeast SNARE Vti1p participates in four distinct SNARE complexes in transport from the trans Golgi network to late endosomes, in transport to the vacuole, in retrograde transport from endosomes to the trans Golgi network and in retrograde transport within the Golgi. So far, all vti1 mutants investigated had mutations within the SNARE motif. Little is known about the function of the N-terminal domain of Vti1p, which forms a three helix bundle called H(abc) domain. Here we generated a temperature-sensitive mutant of this domain to study the effects on different transport steps. The secondary structure of wild type and vti1-3 H(abc) domain was analyzed by circular dichroism spectroscopy. The amino acid exchanges identified in the temperature-sensitive vti1-3 mutant caused unfolding of the H(abc) domain. Transport pathways were investigated by immunoprecipitation of newly synthesized proteins after pulse-chase labeling and by fluorescence microscopy of a GFP-tagged protein cycling between plasma membrane, early endosomes and Golgi. In vti1-3 cells transport to the late endosome and assembly of the late endosomal SNARE complex was blocked at 37°C. Retrograde transport to the trans Golgi network was affected while fusion with the vacuole was possible but slower. Steady state levels of SNARE complexes mediating these steps were less affected than that of the late endosomal SNARE complex. As different transport steps were affected our data demonstrate the importance of a folded Vti1p H(abc) domain for transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A human homolog can functionally replace the yeast vesicle-associated SNARE Vti1p in two vesicle transport pathways.

Membrane traffic in eukaryotic cells requires the interaction of a vesicle-associated soluble NSF attachment protein receptor (v-SNARE) on transport vesicles with a SNARE on the target membrane (t-SNARE). Recently, we identified the yeast protein Vti1p as a v-SNARE that is involved in two transport reactions. Vti1p interacts with the prevacuolar t-SNARE Pep12p in Golgi to prevacuolar transport ...

متن کامل

ENTH domain proteins are cargo adaptors for multiple SNARE proteins at the TGN endosome.

ENTH and ANTH domain proteins are involved in budding of clathrin-coated vesicles. SNAREs are fusogenic proteins that function in the targeting and fusion of transport vesicles. In mammalian and yeast cells, ENTH domain proteins (epsinR and Ent3p) interact with SNAREs of the vti1 family (Vti1b or Vti1p). This interaction indicates that ENTH proteins could function in cargo sorting, which prompt...

متن کامل

The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole.

The interaction between v-SNAREs on transport vesicles and t-SNAREs on target membranes is required for membrane traffic in eukaryotic cells. Here we identify Vti1p as the first v-SNARE protein found to be required for biosynthetic traffic into the yeast vacuole, the equivalent of the mammalian lysosome. Certain vti1-ts yeast mutants are defective in alkaline phosphatase transport from the Golg...

متن کامل

Two syntaxin homologues in the TGN/endosomal system of yeast.

Intracellular membrane traffic is thought to be regulated in part by SNAREs, integral membrane proteins on transport vesicles (v-SNAREs) and target organelles (t-SNAREs) that bind to each other and mediate bilayer fusion. All known SNARE-mediated fusion events involve a member of the syntaxin family of t-SNAREs. Sequence comparisons identify eight such proteins encoded in the yeast genome, of w...

متن کامل

The plant vesicle-associated SNARE AtVTI1a likely mediates vesicle transport from the trans-Golgi network to the prevacuolar compartment.

Membrane traffic in eukaryotic cells relies on recognition between v-SNAREs on transport vesicles and t-SNAREs on target membranes. Here we report the identification of AtVTI1a and AtVTI1b, two Arabidopsis homologues of the yeast v-SNARE Vti1p, which is required for multiple transport steps in yeast. AtVTI1a and AtVTI1b share 60% amino acid identity with one another and are 32 and 30% identical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013